Exposure to Diesel Exhaust Particle Extracts (DEPe) Impairs Some Polarization Markers and Functions of Human Macrophages through Activation of AhR and Nrf2
نویسندگان
چکیده
Macrophages (MΦ), well-known to play an important role in immune response, also respond to environmental toxic chemicals such as diesel exhaust particles (DEP). Potential effects of DEPs towards MΦ polarization, a key hall-mark of MΦ physiology, remain however poorly documented. This study was therefore designed to evaluate the effects of a reference DEP extract (DEPe) on human MΦ polarization. Human blood monocytes-derived MΦ were incubated with IFNγ+LPS or IL-4 to obtain M1 and M2 subtypes, respectively; a 24 h exposure of polarizing MΦ to 10 μg/ml DEPe was found to impair expression of some macrophagic M1 and M2 markers, without however overall inhibition of M1 and M2 polarization processes. Notably, DEPe treatment increased the secretion of the M1 marker IL-8 and the M2 marker IL-10 in both MΦ subtypes, whereas it reduced lipopolysaccharide-induced IL-6 and IL-12p40 secretion in M1 MΦ. In M2 MΦ, DEPe exposure led to a reduction of CD200R expression and of CCL17, CCL18 and CCL22 secretion, associated with a lower chemotaxis of CCR4-positive cells. DEPe activated the Nrf2 and AhR pathways and induced expression of their reference target genes such as Hmox-1 and cytochrome P-4501B1 in M1 and M2 MΦ. Nrf2 or AhR silencing through RNA interference prevented DEPe-related down-regulation of IL-6. AhR silencing also inhibited the down-secretion of IL-12p40 and CCL18 in M1- and M2-DEPe-exposed MΦ, respectively. DEPs are therefore likely to alter expression of some M1 and M2 markers in an AhR- and Nrf2-dependent manner; such regulations may contribute to deleterious immune effects of atmospheric DEP.
منابع مشابه
Regulation of Human Hepatic Drug Transporter Activity and Expression by Diesel Exhaust Particle Extract
Diesel exhaust particles (DEPs) are common environmental air pollutants primarily affecting the lung. DEPs or chemicals adsorbed on DEPs also exert extra-pulmonary effects, including alteration of hepatic drug detoxifying enzyme expression. The present study was designed to determine whether organic DEP extract (DEPe) may target hepatic drug transporters that contribute in a major way to drug d...
متن کاملRapid effects of diesel exhaust particulate extracts on intracellular signaling in human endothelial cells.
Inhalation of ultrafine particulate matter (PM) in air pollution increases cardiovascular mortality by passing into systemic circulation and possibly affecting endothelial cell (EC) function. This study identified the chemical constituents, including polycyclic aromatic hydrocarbons (PAHs), in diesel exhaust particulate extracts (DEPEs) prepared from a truck run at different speeds and engine l...
متن کاملCooperation of the Inducible Nitric Oxide Synthase and Cytochrome P450 1A1 in Mediating Lung Inflammation and Mutagenicity Induced by Diesel Exhaust Particles
Diesel exhaust particles (DEPs) have been shown to activate oxidant generation by alveolar macrophages (AMs), alter xenobiotic metabolic pathways, and modify the balance of pro-antiinflammatory cytokines. In this study we investigated the role of nitric oxide (NO) in DEP-mediated and DEP organic extract (DEPE) -mediated inflammatory responses and evaluated the interaction of inducible NO syntha...
متن کاملDiesel Exhaust Particle Exposure In Vitro Alters Monocyte Differentiation and Function
Air pollution by diesel exhaust particles is associated with elevated mortality and increased hospital admissions in individuals with respiratory diseases such as asthma and chronic obstructive pulmonary disease. During active inflammation monocytes are recruited to the airways and can replace resident alveolar macrophages. We therefore investigated whether chronic fourteen day exposure to low ...
متن کاملInduction of Proinflammatory Cytokines and C-Reactive Protein in Human Macrophage Cell Line U937 Exposed to Air Pollution Particulates
Exposure to particulate matter air pollution causes inflammatory responses and is associated with the progression of atherosclerosis and increased cardiovascular mortality. Macrophages play a key role in atherogenesis by releasing proinflammatory cytokines and forming foam cells in subendothelial lesions. The present study quantified the inflammatory response in a human macrophage cell line (U9...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2015